0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
↳ QTRS
↳ DependencyPairsProof
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
SUM(cons(x, l)) → +1(x, sum(l))
SUM(nil) → 01(#)
+1(1(x), 1(y)) → +1(x, y)
SUM(cons(x, l)) → SUM(l)
+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
PROD(cons(x, l)) → *1(x, prod(l))
PROD(cons(x, l)) → PROD(l)
*1(1(x), y) → 01(*(x, y))
*1(0(x), y) → 01(*(x, y))
*1(1(x), y) → *1(x, y)
+1(0(x), 0(y)) → 01(+(x, y))
*1(0(x), y) → *1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
*1(1(x), y) → +1(0(*(x, y)), y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
SUM(cons(x, l)) → +1(x, sum(l))
SUM(nil) → 01(#)
+1(1(x), 1(y)) → +1(x, y)
SUM(cons(x, l)) → SUM(l)
+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
PROD(cons(x, l)) → *1(x, prod(l))
PROD(cons(x, l)) → PROD(l)
*1(1(x), y) → 01(*(x, y))
*1(0(x), y) → 01(*(x, y))
*1(1(x), y) → *1(x, y)
+1(0(x), 0(y)) → 01(+(x, y))
*1(0(x), y) → *1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
*1(1(x), y) → +1(0(*(x, y)), y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
SUM(cons(x, l)) → +1(x, sum(l))
SUM(nil) → 01(#)
+1(1(x), 1(y)) → +1(x, y)
SUM(cons(x, l)) → SUM(l)
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
+1(0(x), 0(y)) → +1(x, y)
PROD(cons(x, l)) → *1(x, prod(l))
PROD(cons(x, l)) → PROD(l)
*1(1(x), y) → 01(*(x, y))
*1(1(x), y) → *1(x, y)
*1(0(x), y) → 01(*(x, y))
*1(0(x), y) → *1(x, y)
+1(0(x), 0(y)) → 01(+(x, y))
+1(1(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
*1(1(x), y) → +1(0(*(x, y)), y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
Used ordering: Combined order from the following AFS and order.
+1(1(x), 1(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
01 > #
#: multiset
01: [1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
+1(1(x), 1(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+1(1(x), 1(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
Used ordering: Combined order from the following AFS and order.
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
11 > #
01 > #
+1 > #
#: multiset
+1: [1]
01: [1]
11: [1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
SUM(cons(x, l)) → SUM(l)
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SUM(cons(x, l)) → SUM(l)
cons2 > SUM1
SUM1: [1]
cons2: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
*1(1(x), y) → *1(x, y)
*1(0(x), y) → *1(x, y)
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*1(0(x), y) → *1(x, y)
Used ordering: Combined order from the following AFS and order.
*1(1(x), y) → *1(x, y)
trivial
*^11: [1]
01: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
*1(1(x), y) → *1(x, y)
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*1(1(x), y) → *1(x, y)
11 > *^11
*^11: [1]
11: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
PROD(cons(x, l)) → PROD(l)
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROD(cons(x, l)) → PROD(l)
cons2 > PROD1
PROD1: [1]
cons2: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))